BOSWELL-BÈTA

James Boswell Exam Chemistry VWO Markscheme

Date: Example exam 2

Time: 1:00 pm – 4:00 pm (3:00 hours)

Number of questions: 5Number of subquestions: 23Total number of points: 85

Question 1.a

A: methylethanoate	2
B: 1-hydroxygronanone	2

Question 1.b

Both contain polar groups,	1
but compound B can form H-bonds (donate)	1
so compound B will be more soluble.	1

Question 1.c

Question 1.d

Question 1.e

atom C-2 is asymmetric	1
optical isomers are created in equal amounts from chemical reactions	1
the mixture of products will not be optically active (racemic mixture)	1

Question 2.a

Question 2.b

In an acidic environment the carbonate will react with the acid(s)	1
reaction: MnCO ₃ (s) + 2 H ⁺ (aq) \longrightarrow Mn ²⁺ (aq) + H ₂ O (I) + CO ₂ (g)	2
completion reaction + conclusion	2

Question 2.c

single cell with two electrodes	1
electrode substances indicated	1
substances in the electrolyte solution indicated	1
manganese electrode is the negative (—) electrode.	2

Question 2.d

half reaction 1: $Mn^{2+} + 2e^- \longrightarrow Mn$	1
half reaction 2: $2 H_2 O \longrightarrow O_2 + 4 H^+ + 4 e^-$	1
understanding that water decomposes	1
total reaction: $2 \text{ Mn}^{2+} + 2 \text{ H}_2 \text{O} \longrightarrow 2 \text{ Mn} + \text{O}_2 + 4 \text{ H}^+ + 4 \text{ e}^-$	2
if the wrong half reaction is given instead of water 2, do not deduct points if the total reaction is correct	

Question 2.e

voltage: $U_{red} - U_{ox}$	1
$U_red = 1.23V$	1
so minimum: $1.23 \text{ V}0.72 \text{ V} = 1.95 \text{ V}$	1

Question 3.a

$$K = \frac{[HI]^2}{[H_2][I_2]}$$

$$K = \frac{1.12^2}{1.44^2} = 0.60$$
 2

Question 3.b

K increases, so the equilibrium will shift to the right (product side)	1
At higher T the endothermic side is favoured	1
Reaction to the right is endothermic	1

Question 3.c

Concentration HI starts at 0	1
Difference H_2 : 2 – 1.22 = 0.78	1
Concentration HI: 1.56 mol/L (ratio 1:2)	1
Equilibrium at t $=\pm 2.5$	1

Question 4.a

$HNO_3 \colon 0.86 \times 1.51 g/mL = 1.298 g/mL$, in mole: $\frac{1.298 g/mL}{63.02 g/mol} = 0.0206 mol/mL$	1
HCl: $0.36 \times 1.18 \text{g/mL} = 0.4248 \text{g/mL}$, in mole: $\frac{0.4248 \text{g/mL}}{36.46 \text{g/mol}} = 0.0116 \text{mol/mL}$	1
$ ext{H}^+$: $0.0206 ext{mol} + 2 imes 0.0116 ext{mol} = 0.0438 ext{mol}$ per 3 mL.	1
$[H^{+}]: \frac{0.0438 \text{mol}}{3 \text{mL}} = 14.6 \text{mol/L}$	1
$pH = -\log 14.6 = -1.16$	1

Question 4.b

half reaction NO_3^- : 0.93 V (half reaction Au: 1.50 V)	1
reaction proceeds if $U_{ox} - U_{red} > 0$	1
0.93 - 1.50 < 0: reaction does not proceed	1
bij gelijkwaardige beredenering op basis van de positie in de BINAS tabel	max 3

Question 4.c

Step 2: removes Au ³⁺ -ions from solution	1
Step 1: equilibrium shifts right	1
(Almost) completion reaction in step 2: the gold will dissolve	1

Question 4.d

3 NO ₃ and 4 Cl are used up in the total reaction, equal to 7 conjugated base particles total	1
6 H ⁺ are used up in the total reaction	1
So the solution becomes more acidic with every drop, the use of an acid/base indicator is therefore not	1
possible	

Question 4.e

Insight that the calculation has to be performed using the nitrate-ions	1
Amount of added NO_3^- : $0.0206mol/mL imes 11.4mL = 0.235mol$	1
$ratio\ 1:3 = \frac{0.235mol}{3} = 0.0783molAu$	1
in gram: $0.0783\mathrm{mol} imes 197.0\mathrm{g/mol} = 15.4\mathrm{g}\mathrm{Au}$	1
mass percentage: $\frac{15.4 \text{g}}{24.2 \text{g}} \times 100\% = 63.7\%$	1

Question 5.a

benzene-1,4-dicarboxylic acid
benzene-1,4-diamine
2

Question 5.b

condensation polymerisation, reaction of a dioic acid and a diamine

2

Question 5.c

An example of a correct answer is:

correct rendering of a fragment (by ~, — of •) and the correct number of units1alternated benzene-1,4-dicarboxylic acid and benzene-1,4-diamine1correctly drawing of at least one of the amide bonds1rest of the structure correctly drawn2

Question 5.d

molecules have two points of attachment (one growth-direction),
so it will form a chain polymer (thermoplastic material)

1

Question 5.e

Hydrogen bonds (dipole-dipole interactions and van der waals interactions/London dispersion forces), 1
between N-H and O= 1