Boswell-BèTA

James Boswell Exam Chemistry VWO

Markscheme

Date:	Example exam 2
Time:	$1: 00 \mathrm{pm}-4: 00 \mathrm{pm}$ (3:00 hours)
Number of questions:	5
Number of subquestions:	23
Total number of points:	85

A: methylethanoate
B: 1-hydroxypropanone

Question 1.b

Both contain polar groups, 1
but compound \mathbf{B} can form H -bonds (donate) 1
so compound \mathbf{B} will be more soluble. 1
Question 1.c
methanol left of the arrow
ethanoic acid of the arrow 1
methylethanoate right of the arrow 1
water right of the arrow 1
Question 1.d
2-chloro-propan-1,2-ol3
Question 1.e
atom $\mathrm{C}-2$ is asymmetric 1
optical isomers are created in equal amounts from chemical reactions 1
the mixture of products will not be optically active (racemic mixture) 1
Question 2.a
Assume 100 g , of that 1.5 g is Fe^{2+}. In mole: $\frac{1.5 \mathrm{~g}}{55.85 \mathrm{~g} / \mathrm{mol}}=2.7 \cdot 10^{-2} \mathrm{~mol}$ 1
moles $\mathrm{Fe}^{2+}=\mathrm{CO}_{3}{ }^{2-}: 2.7 \cdot 10^{-2} \mathrm{~mol} \times(12.01 \mathrm{~g} / \mathrm{mol}+3 \times 16.00 \mathrm{~g} / \mathrm{mol})=1.6 \mathrm{~g} \mathrm{CO}_{3}{ }^{2-}$ 1
So, there is $100 \mathrm{~g}-1.5 \mathrm{~g}-1.6 \mathrm{~g}=96.9 \mathrm{~g} \mathrm{MgCO}_{3}$ present. In moles: $\frac{96.9 \mathrm{~g}}{114.95 \mathrm{~g} / \mathrm{mol}}=0.84 \mathrm{~mol} \mathrm{MnCO}_{3}$ 1
the same number of Mn^{2+} moles: $0.84 \mathrm{~mol} \times 54.94 \mathrm{~g} / \mathrm{mol}=46.2 \mathrm{gMn}^{2+}$ 1
$\frac{46.2 \mathrm{~g}}{100 \mathrm{~g}} \times 100 \%=46.2 \% \mathrm{Mn}^{2+}$ in rhodochrosite. 1When 47.1% is answeredmax 3
Question 2.b
In an acidic environment the carbonate will react with the acid(s) 1
reaction: $\mathrm{MnCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$ 2
completion reaction + conclusion 2

single cell with two electrodes 1
electrode substances indicated 1
substances in the electrolyte solution indicated $\quad 1$
manganese electrode is the negative $(-)$ electrode. $\quad \mathbf{2}$

Question 2.d

half reaction 1: $\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}$	$\mathbf{1}$
half reaction 2: $2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$\mathbf{1}$
understanding that water decomposes	$\mathbf{1}$
total reaction: $2 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Mn}+\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$	$\mathbf{2}$
if the wrong half reaction is given instead of water 2, do not deduct points if the total reaction is correct	

Question 2.e
voltage: $U_{\text {red }}-U_{\text {ox }} \quad 1$
$\mathrm{U}_{\text {red }}=1.23 \mathrm{~V} \quad 1$
so minimum: $1.23 \mathrm{~V}--0.72 \mathrm{~V}=1.95 \mathrm{~V} \quad 1$

Question 3.a
$\mathrm{K}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
2
$K=\frac{1.12^{2}}{1.44^{2}}=0.60$
2

Question 3.b

K increases, so the equilibrium will shift to the right (product side) 1
At higher T the endothermic side is favoured 1
Reaction to the right is endothermic 1

Question 3.c

Concentration HI starts at $0 \quad 1$
Difference $\mathrm{H}_{2}: 2-1.22=0.78 \quad 1$
Concentration HI: $1.56 \mathrm{~mol} / \mathrm{L}$ (ratio 1:2) 1
Equilibrium at $t= \pm 2.5 \quad 1$

```
\(\mathrm{HNO}_{3}: 0.86 \times 1.51 \mathrm{~g} / \mathrm{mL}=1.298 \mathrm{~g} / \mathrm{mL}\), in mole: \(\frac{1.298 \mathrm{~g} / \mathrm{mL}}{63.02 \mathrm{~g} / \mathrm{mol}}=0.0206 \mathrm{~mol} / \mathrm{mL} \quad 1\)
\(\mathrm{HCl}: 0.36 \times 1.18 \mathrm{~g} / \mathrm{mL}=0.4248 \mathrm{~g} / \mathrm{mL}\), in mole: \(\frac{0.4248 \mathrm{~g} / \mathrm{mL}}{36.46 \mathrm{~g} / \mathrm{mol}}=0.0116 \mathrm{~mol} / \mathrm{mL}\)
1
\(\mathrm{H}^{+}: 0.0206 \mathrm{~mol}+2 \times 0.0116 \mathrm{~mol}=0.0438 \mathrm{~mol}\) per 3 mL . \(\mathbf{1}\)
\(\left[\mathrm{H}^{+}\right]: \frac{0.0438 \mathrm{~mol}}{3 \mathrm{~mL}}=14.6 \mathrm{~mol} / \mathrm{L} \quad 1\)
\(\mathrm{pH}=-\log 14.6=-1.16 \quad 1\)
```

Question 4.b
half reaction $\mathrm{NO}_{3}{ }^{-}: 0.93 \mathrm{~V}$ (half reaction $\mathrm{Au}: 1.50 \mathrm{~V}$) 1
reaction proceeds if $U_{\text {ox }}-U_{\text {red }}>0 \quad 1$
$0.93-1.50<0$: reaction does not proceed 1
bij gelijkwaardige beredenering op basis van de positie in de BINAS tabel max 3

Question 4.c

Step 2: removes Au^{3+}-ions from solution 1
Step 1: equilibrium shifts right 1
(Almost) completion reaction in step 2: the gold will dissolve 1

Question 4.d

$3 \mathrm{NO}_{3}{ }^{-}$and $4 \mathrm{Cl}^{-}$are used up in the total reaction, equal to 7 conjugated base particles total 1
$6 \mathrm{H}^{+}$are used up in the total reaction 1
So the solution becomes more acidic with every drop, the use of an acid/base indicator is therefore not 1
possible

Question 4.e

Insight that the calculation has to be performed using the nitrate-ions 1
Amount of added $\mathrm{NO}_{3}{ }^{-}: 0.0206 \mathrm{~mol} / \mathrm{mL} \times 11.4 \mathrm{~mL}=0.235 \mathrm{~mol}$ 1
ratio $1: 3=\frac{0.235 \mathrm{~mol}}{3}=0.0783 \mathrm{molAu}$ 1
in gram: $0.0783 \mathrm{~mol} \times 197.0 \mathrm{~g} / \mathrm{mol}=15.4 \mathrm{~g} \mathrm{Au}$ 1
mass percentage: $\frac{15.4 \mathrm{~g}}{24.2 \mathrm{~g}} \times 100 \%=63.7 \%$ 1

Question 5.a

benzene-1,4-dicarboxylic acid
benzene-1,4-diamine

Question 5.c

An example of a correct answer is:

correct rendering of a fragment (by $\sim,-$ of \bullet) and the correct number of units $\mathbf{1}$
alternated benzene-1,4-dicarboxylic acid and benzene-1,4-diamine 1
correctly drawing of at least one of the amide bonds $\quad 1$
rest of the structure correctly drawn 2

Question 5.d
molecules have two points of attachment (one growth-direction),
so it will form a chain polymer (thermoplastic material)

Question 5.e

Hydrogen bonds (dipole-dipole interactions and van der waals interactions/London dispersion forces),
between $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}=$

